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PARAMETRIC ANALYSIS OF SITE MODES 
OF THERMAL EXPLOSIONS BY A 
"GEOMETRICAL-OPTICAL" ASYMPTOTIC METHOD 

A. V. Kotovich and G. A. Nesenenko UDC 541.124 

Asymptotic formulas describing the modes of  site thermal eaplosions with an arbitrary initial distribu- 
tion of temperature and results of calculation by these formulas are presented. A comparison with the 
data obtained by other authors is made and the effect of  the presence of two "traveling waves" is re- 
veah, d. 

Practical interest in the processes of thermal explosion is associated mainly with problems of safety in 
certain kinds of work with explosives - treatment, production, carrying out of blastings in high-temperature 
wells, etc. In many cases, on the basis of thermal-explosion theory, it is possible, in principle, to precalculate 
safe conditions which eliminate spontaneous origination of explosion. 

By virtue of the importance of the site modes of a thermal explosion, different authors studied them 
using numerical experiments and approximate analytical methods, in particular, asymptotic ones [1-4]. We note 
that the significance of asymptotic methods increases if the initial distribution of temperature in a substance is 
arbitrary [3], since in this case a parametric analysis of the modes of a site thermal explosion is possible [4]. 

This work briefly describes the results of a parametric analysis of the modes of  a site thermal explo- 
sion. It is based on the use of a mathematically correct "geometrical-optical" asymptotic method [5]. 

A mathematical formulation of the problem of a site thermal explosion (without regard for the burnout 
of  a substance - a zeroth-order reaction) in dimensionless parameters suggested by Frank-Kamenetskii has the 
form [ 1-41 
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o(~,~)=o°(~), x=+0,  -oo<~<oo: (2) 

Oo (~, ,) - -  ~ 0 ,  ~ _ + = ,  (3) 

where c = Fk -1 and 13 is introduced for the convenience of  further presentation: 13 is equal either to zero - then 
the function O(~, "¢) describes a solution of the "inert" Cauchy problem, or to unity - then the function O(~, 
x) describes a site thermal explosion. The smallness of  the parameter ~ = Fk -I is a special property of the 
modes of a site thermal explosion in condensed media [1-3]. This allows one to write the solution ®(~, "c) of  
the Cauchy problem in the form [4] 

o (~, ~ ) &  4, (~, ~) + at~ ({, ~) + e2d2 ({, ~) + .... (4) 

where, by virtue of the small values of the Arrhenius number [1, 2], the coefficients d/(~, x) can in turn be 
represented as [4] 
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4 ({, ~:) = 40) (~, ~) + A r ~  1) ({, "c) + Ar242) (~, 7:) + ... (5) 

For example, 

~o) (~, x) = _ In [exp ( -  Oo (9)) - ]3x], (6) 
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13 J 
where B = 1 +1®°(~) + 112. 

The details of deriving fornmlas (4)-(9) can be found in [4], where a rather thorough analytical com- 
parison of  the asymptotics in terms of  the Poincare (4) solution O(~, x) with the results obtained by other 
authors is made. 

In the present work, the authors studied the effect of  such parameters as: l) the Arrhenius number,  2) 
the Frank-Kamenetskii criterion (by varying a small dimensionless parameter ¢ = Fk-l), 3) the degree of  influ- 
ence of  evaluated terms of  the asymptotics in formulas (5) on the mode of  a site thermal explosion described 
by the solution ®(~, "c) of the Cauchy problem (1)-(3). We note that this parametric analysis o f  the processes 
of  thermal ignition of condensed media, which uses asymptotic formulas obtained by a "geometrical-optical" 
asymptotic method, was made in [6]. 

The initial distribution O°(~) of  the dimensionless heating O(~, "~) was assumed to be Gaussian, which, 
in the dimensionless system of coordinates used, corresponds to an analytical expression 

O ° (~) = O (9, x) I,=o - [Tin ({r) -0 r o] E , (10) 
nr;o 

where Tin(X) = exp {-x 2 }. 
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TABLE 1. Dimensionless Time x as a Function o f  Dimensionless Heating 0 = d 0 = a~o°) + Ard(o l) + Ar242) at e = 0, 

O° = 0, To=  1 

Ar z 0 0.1 

0.03 O 0 0.105 

0.01 O 0 0.105 

0.001 0 0 0.105 

Ar z 0.8 0.85 

0.03 0 1.509 1.702 

0.01 O 1.584 1.849 

0.001 0 1.607 1.893 

TABLE 2. Dimensionless Time 

and Various Arrhenius Numbers Ar 

0.2 

0.223 

0,223 

0.223 

0,859 

1.736 

1.903 

1.954 

0.3 0.4 

0.356 0.509 

0.356 0.51 

0.357 0.511 

0.9 0.904 

1.844 1.845 

2.198 2.23 

2.294 2.334 

0.5 

0.688 

0.692 

0.693 

0.944 

0.55 0.6 0.65 0.7 0.75 

0.79 0.903 1.029 1.17 1.33 

0.796 0.913 1.044 1.195 1.371 

0.798 0.916 1.049 1.203 1.385 

0.95 0.964 0.99 0.994 0.996 

2.59 2.645 

2.862 2.971 

2.717 

3.286 4.401 4.715 4.824 

as a Function o f  Dimensionless Heating O Obtained by the Todes Formula  at 

= 0, 15 = 1, ~ = 0, O ° = 0 and Various Arrhenius Numbers Ar 

Ar "t 0 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.65 

0.03 O 0 O. 105 0.223 0.356 0.509 0.689 0.702 0.907 1.035 

0.01 O 0 0.105 0.223 0.356 0.51 0.692 0.796 0.913 1.045 

0.001 O 0 0.105 0.223 0.357 0.511 0.693 0.798 0.916 1.049 

Ar ~ 0.75 0.8 0.85 0.859 0.9 0.944 0.95 0.99 0.994 

0.03 (9 1.35 1.551 1.796 1.847 

0.01 (9 1.374 1.588 1.86 1.917 2.229 2.715 

0.001 O 1.385 1.607 1.893 1.955 2.295 2.863 2.973 4.453 4.862 

0.7 

1.181 

1.196 

1.203 

We begin a parametric analysis o f  properties of  the solution ®(~, z) of  the boundary-value problem 
(1)-(3) from the case where ~; = 0, since here 

O (~, ,) ~ do (~, z).  ( l l )  

For Ar << 1, the asymptotics o f  the function d0(~ "0 has 

do ' )  + Ar 

where the coefficients ~o)(~, x), ~ ) ( ~ ,  ~), and ~ ) ( ~ ,  x) 

tively. The function do(k, "0 is a solution of  the Cauchy 

ado 
01: - [3 exp 

the form 

~) + Ar2~? ) (~, ~) + O (Ar3) , (12) 

are assigned by analytical expressions (6)-(8), respec- 
problem 

l + A r d o  J ,  (13) 

do(~,, x) ~ 0°(~,), x ~ + O, (14) 

and the solution do(~, "0 o f  the Cauchy problem (13) and (14) was studied earlier by other authors within the 
framework of  the model o f  "adiabatic thermal explosion" [2]. 

Graphs of  the solution d0({, x) obtained as a result of  numerical calculations on a computer are given 

in [2]. It follows from them that the solution d~X~,, z) of  the Cauchy problem (13), (14) is a limited function 
monotonically increasing with time. 

An analytical solution o f  the Cauchy problem (13), (14) was obtained by Todes (the "Todes solution" 
[2]) and has the following form (the notation adopted in the present paper is used): 

195 



O ~ 

-2 

-4 

-6 0 

0 -" 

/ - L f  

o12 0'4 o.'6 0.'8 r 
Fig. 1. Dimensionless heating O = do + ~ o )  vs. dimensionless time x at 

Ar = 0.03, 13 = 1, ~ = 0, e = 0.001 (1), e = 0.005 (2), e = 0.001 (3), e = 
0.0005 (4), and e = 0.0001 (5). 
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Fig. 2. Dimensionless heating 19 = do + ed~ °) vs. dimensionless coordinate 

at e = 0.001, 13 = I: a, b) I) "c = 0; 2) 0.3; 3) 0.5; 4) 0.7; 5) 0.904 (Ar 
= 0.03); c) 1-4) see a, b); 5) "c = 0.9; 6) 0.964 (Ar = 0.01); d) 1-4) see a, 

b); 5) x = 0.9; 6) 0.996 (Ar = 0.001). 

expt rl[ { , } 
"CAr_7~0 Ar ( 1 + Ar  ®o) exp Ar ( 1 + Ar (9 °) 

>( 

x ~ k ! A r  k ( l + A r O ° )  k -  ( l + A r O )  exp A s ( l + A r ( 9 )  

k=l 

~ k!Ar k(l+ArO)k]. 
k=l 

(15) 
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To show the accuracy of the obtained asymptotic tbrmula (12), the authors made comparative calcula- 
tions by formula (12) (see Table 1) and by the "Todes formula" (15) (see Table 2). The data presented show 
good agreement of the results and indicate that allowance for the terms of  the asymptotics (Ar << 1) in formula 
(12) exerts a considerable effect on the accuracy of calculation of x = "c(@). The divergence in values of  x in 
Table 1 and Table 2 is explained by the fact that at Ar = 0.03 a small number of  terms is allowed for in 
formula (12), i.e., if terms of  the order of O(Ar 3) are taken into account, then Tables 1 and 2 will agree more 

completely. 
Figure 1 presents the values of 6) = 6)(x) at ~ = 0 as functions of different values of e = Fk -l.  The 

figure shows complete qualitative agreement with the results obtained in [ 1]. 
Of greatest interest to the authors are the data of parametric analysis of a site thermal explosion given 

in Fig. 2. It follows from these graphs that, first, the curves 6) = 0(9)  are even functions and, second, the 
initial "Gaussian" distribution (10), which is symmetric at the initial instant of time "c = 0, forms, as time goes, 
two "traveling waves," one of  which moves toward ~ = +oo and the other toward ~ . . . .  In this case, the 

amplitude of these "traveling waves" decreases with decrease in Ar. 
It is of interest to note that in many works describing a solution of nonstationary problems of  heat 

conduction with nonlinear heat sources the presence of "traveling-wave" solutions is indicated [2, 7]. Neverthe- 
less, R. S. Burkina and coauthors [3], who studied the modes of site thermal explosions with variable initial 
conditions, failed to record the effect shown in Fig. 2. 

The asymptotic relations (4)-(9) given above can be refined by addition of terms (with respect to e and 
At) so that they can be used for more thorough parametric analysis of the modes of a site thermal explosion 

[11. 

N O T A T I O N  

6) = (T-To)E/RT~o, heating of the substance; ~ = x/r, spatial coordinate; x = t/t*, time; r and t* = 
(cpRT~)/(QEk(To)), adiabatic scale of time; T = T(x, t), temperature in the zone of reaction; T0, ambient tem- 
perature; R, gas constant; E, activation energy; c, heat capacity; p, density; Ar = RTo/E, Arrhenius number; Fk 
= QErZk(To)/(LRT~), Frank-Kamenetskii criterion; Q, heat effect of the reaction (per unit volume); k(T), cha- 
racteristic rate constant of  the reaction at temperature T: k(T) = K0 exp {-E/RT}; Ko, preexponential factor; 
Tin(X), distribution of temperature at the initial instant of time. 
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